{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 05 Variance and standard deviation of a discrete random variable"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n"
],
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"%%html\n",
""
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"from pandas import Series, DataFrame\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n",
"from scipy import stats, special"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"[khanacademy](https://www.khanacademy.org/math/ap-statistics/random-variables-ap/discrete-random-variables/v/variance-and-standard-deviation-of-a-discrete-random-variable?modal=1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
""
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"df = DataFrame({'x': [0, 1, 2, 3, 4] ,'P(x)': [0.1, 0.15, 0.4, 0.25, 0.1]})"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" x | \n",
" P(x) | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 0 | \n",
" 0.10 | \n",
"
\n",
" \n",
" 1 | \n",
" 1 | \n",
" 0.15 | \n",
"
\n",
" \n",
" 2 | \n",
" 2 | \n",
" 0.40 | \n",
"
\n",
" \n",
" 3 | \n",
" 3 | \n",
" 0.25 | \n",
"
\n",
" \n",
" 4 | \n",
" 4 | \n",
" 0.10 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" x P(x)\n",
"0 0 0.10\n",
"1 1 0.15\n",
"2 2 0.40\n",
"3 3 0.25\n",
"4 4 0.10"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"mean = np.sum(df['x'] * df['P(x)'])"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"# caution Linear algebra \n",
"mean = np.dot(df['x'], df['P(x)'])"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"var = np.sum((df['x'] - mean)**2 * df['P(x)'])"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"std = np.sqrt(var)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"2.1"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"mean"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"1.19"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"var"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"1.0908712114635715"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"std"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAASKElEQVR4nO3df6hf913H8efLzHTi/FHtBTXJ3c1mJsuctnBNheGU2a6ZlcQ/OsxkUqEQJg1OqmiG0mHGoKsw/SeyBhcUtWZ1FblsGaFu3US0271d62ZSw26zulwyaDR1UzZbb/f2j3s6vvv2m9xzc3981899PuCS8/l1vu9DuK97ON/v95xUFZKkdn3HuAuQJK0vg16SGmfQS1LjDHpJapxBL0mNe9m4Cxh23XXX1dTU1LjLkKSXlEcfffQ/qmpi1Ni3XdBPTU0xNzc37jIk6SUlyb9fbsxLN5LUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxvYI+yd4kZ5PMJzl8hXm3Jakk0wN97+rWnU1yy1oULUnqb9nP0SfZAhwFbgYWgNkkM1V1Zmje9wC/AXx6oG83cAB4HfAjwN8neU1VPb92hyBJupI+Z/R7gPmqOldVzwEngP0j5r0HuBf434G+/cCJqnq2qr4IzHf7kyRtkD7fjN0GnB9oLwA3Dk5IcgOwo6o+kuS3h9Y+MrR22/ALJDkIHASYnJzsV7k0YOrwR8ddwpp56p5bx12CGtPnjD4j+r75WKok3wH8EfBbK137zY6qY1U1XVXTExMjb9UgSbpKfc7oF4AdA+3twIWB9vcAPw58MgnADwEzSfb1WCtJWmd9zuhngV1JdibZytKbqzMvDFbVV6rquqqaqqopli7V7KuquW7egSTXJNkJ7AI+s+ZHIUm6rGXP6KtqMckh4BSwBTheVaeTHAHmqmrmCmtPJ3kAOAMsAnf6iRtJ2li9blNcVSeBk0N9d19m7s8Ntd8LvPcq65MkrZLfjJWkxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNa5X0CfZm+Rskvkkh0eMvyPJ55M8nuQfk+zu+qeSfL3rfzzJB9b6ACRJV7bsE6aSbAGOAjez9LDv2SQzVXVmYNr9VfWBbv4+4P3A3m7syaq6fm3LliT11eeMfg8wX1Xnquo54ASwf3BCVX11oPndQK1diZKk1egT9NuA8wPtha7vWyS5M8mTwL3AbwwM7UzyWJJPJfmZVVUrSVqxPkGfEX0vOmOvqqNV9Wrgd4Hf77q/DExW1Q3AXcD9Sb73RS+QHEwyl2Tu4sWL/auXJC2rT9AvADsG2tuBC1eYfwL4JYCqeraq/rPbfhR4EnjN8IKqOlZV01U1PTEx0bd2SVIPfYJ+FtiVZGeSrcABYGZwQpJdA81bgS90/RPdm7kkeRWwCzi3FoVLkvpZ9lM3VbWY5BBwCtgCHK+q00mOAHNVNQMcSnIT8H/AM8Dt3fI3AkeSLALPA++oqkvrcSCSpNGWDXqAqjoJnBzqu3tg+52XWfcg8OBqCpQkrY7fjJWkxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TG9Qr6JHuTnE0yn+TwiPF3JPl8kseT/GOS3QNj7+rWnU1yy1oWL0la3rJB3z3c+yjwFmA38LbBIO/cX1Wvr6rrgXuB93drd7P0MPHXAXuBP3nhYeGSpI3R54x+DzBfVeeq6jngBLB/cEJVfXWg+d1Addv7gRNV9WxVfRGY7/YnSdogfR4Ovg04P9BeAG4cnpTkTuAuYCvwpoG1jwyt3TZi7UHgIMDk5GSfuiVJPfU5o8+IvnpRR9XRqno18LvA769w7bGqmq6q6YmJiR4lSZL66hP0C8COgfZ24MIV5p8Afukq10qS1lifoJ8FdiXZmWQrS2+uzgxOSLJroHkr8IVuewY4kOSaJDuBXcBnVl+2JKmvZa/RV9VikkPAKWALcLyqTic5AsxV1QxwKMlNwP8BzwC3d2tPJ3kAOAMsAndW1fPrdCySpBH6vBlLVZ0ETg713T2w/c4rrH0v8N6rLVCStDp+M1aSGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIa1yvok+xNcjbJfJLDI8bvSnImyeeSfDzJKwfGnk/yePczM7xWkrS+ln2UYJItwFHgZmABmE0yU1VnBqY9BkxX1deS/DpwL/DL3djXq+r6Na5bktRTnzP6PcB8VZ2rqueAE8D+wQlV9XBVfa1rPgJsX9syJUlXq8/DwbcB5wfaC8CNV5h/B/CxgfbLk8wBi8A9VfV3wwuSHAQOAkxOTvYoSdKgqcMfHXcJa+ape24ddwnN6RP0GdFXIycmbwemgZ8d6J6sqgtJXgV8Isnnq+rJb9lZ1THgGMD09PTIfUuSrk6fSzcLwI6B9nbgwvCkJDcBvwfsq6pnX+ivqgvdv+eATwI3rKJeSdIK9Qn6WWBXkp1JtgIHgG/59EySG4D7WAr5pwf6r01yTbd9HfAGYPBNXEnSOlv20k1VLSY5BJwCtgDHq+p0kiPAXFXNAH8IvAL4myQAX6qqfcBrgfuSfIOlPyr3DH1aR5K0zvpco6eqTgInh/ruHti+6TLr/gl4/WoKlCStjt+MlaTGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMb1Cvoke5OcTTKf5PCI8buSnEnyuSQfT/LKgbHbk3yh+7l9LYuXJC1v2aBPsgU4CrwF2A28LcnuoWmPAdNV9RPAh4F7u7U/ALwbuBHYA7w7ybVrV74kaTl9zuj3APNVda6qngNOAPsHJ1TVw1X1ta75CLC9274FeKiqLlXVM8BDwN61KV2S1EefoN8GnB9oL3R9l3MH8LGVrE1yMMlckrmLFy/2KEmS1FefoM+Ivho5MXk7MA384UrWVtWxqpququmJiYkeJUmS+uoT9AvAjoH2duDC8KQkNwG/B+yrqmdXslaStH76BP0ssCvJziRbgQPAzOCEJDcA97EU8k8PDJ0C3pzk2u5N2Dd3fZKkDfKy5SZU1WKSQywF9BbgeFWdTnIEmKuqGZYu1bwC+JskAF+qqn1VdSnJe1j6YwFwpKourcuRSJJGWjboAarqJHByqO/uge2brrD2OHD8aguUJK2O34yVpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxvUK+iR7k5xNMp/k8IjxNyb5bJLFJLcNjT2f5PHuZ2Z4rSRpfS37KMEkW4CjwM3AAjCbZKaqzgxM+xLwa8Bvj9jF16vq+jWoVZJ0Ffo8M3YPMF9V5wCSnAD2A98M+qp6qhv7xjrUKElahT5Bvw04P9BeAG5cwWu8PMkcsAjcU1V/NzwhyUHgIMDk5OQKdq1BU4c/Ou4S1sxT99w67hKkZvS5Rp8RfbWC15isqmngV4A/TvLqF+2s6lhVTVfV9MTExAp2LUlaTp+gXwB2DLS3Axf6vkBVXej+PQd8ErhhBfVJklapT9DPAruS7EyyFTgA9Pr0TJJrk1zTbV8HvIGBa/uSpPW3bNBX1SJwCDgFPAE8UFWnkxxJsg8gyU8lWQDeCtyX5HS3/LXAXJJ/AR5m6Rq9QS9JG6jPm7FU1Ung5FDf3QPbsyxd0hle90/A61dZoyRpFfxmrCQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDWuV9An2ZvkbJL5JIdHjL8xyWeTLCa5bWjs9iRf6H5uX6vCJUn9LBv0SbYAR4G3ALuBtyXZPTTtS8CvAfcPrf0B4N3AjcAe4N1Jrl192ZKkvvqc0e8B5qvqXFU9B5wA9g9OqKqnqupzwDeG1t4CPFRVl6rqGeAhYO8a1C1J6qnPw8G3AecH2gssnaH3MWrttuFJSQ4CBwEmJyd77nq0qcMfXdX6bxdP3XPruEuQXhJa+Z2H9fu973NGnxF91XP/vdZW1bGqmq6q6YmJiZ67liT10SfoF4AdA+3twIWe+1/NWknSGugT9LPAriQ7k2wFDgAzPfd/Cnhzkmu7N2Hf3PVJkjbIskFfVYvAIZYC+gnggao6neRIkn0ASX4qyQLwVuC+JKe7tZeA97D0x2IWONL1SZI2SJ83Y6mqk8DJob67B7ZnWbosM2rtceD4KmqUJK2C34yVpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxvUK+iR7k5xNMp/k8Ijxa5J8qBv/dJKprn8qydeTPN79fGBty5ckLWfZRwkm2QIcBW4GFoDZJDNVdWZg2h3AM1X1o0kOAO8Dfrkbe7Kqrl/juiVJPfU5o98DzFfVuap6DjgB7B+asx/48277w8DPJ8nalSlJulp9gn4bcH6gvdD1jZxTVYvAV4Af7MZ2JnksyaeS/MyoF0hyMMlckrmLFy+u6AAkSVfWJ+hHnZlXzzlfBiar6gbgLuD+JN/7oolVx6pquqqmJyYmepQkSeqrT9AvADsG2tuBC5ebk+RlwPcBl6rq2ar6T4CqehR4EnjNaouWJPXXJ+hngV1JdibZChwAZobmzAC3d9u3AZ+oqkoy0b2ZS5JXAbuAc2tTuiSpj2U/dVNVi0kOAaeALcDxqjqd5AgwV1UzwAeBv0gyD1xi6Y8BwBuBI0kWgeeBd1TVpfU4EEnSaMsGPUBVnQRODvXdPbD9v8BbR6x7EHhwlTVKklbBb8ZKUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS43oFfZK9Sc4mmU9yeMT4NUk+1I1/OsnUwNi7uv6zSW5Zu9IlSX0sG/Tdw72PAm8BdgNvS7J7aNodwDNV9aPAHwHv69buZun5sa8D9gJ/8sLDwiVJG6PPGf0eYL6qzlXVc8AJYP/QnP3An3fbHwZ+Pkm6/hNV9WxVfRGY7/YnSdogfR4Ovg04P9BeAG683JyqWkzyFeAHu/5HhtZuG36BJAeBg13zf5Kc7VX9+FwH/Md6vkDet557X5V1P3bY3Me/mY8dNvfxr/LYX3m5gT5BnxF91XNOn7VU1THgWI9avi0kmauq6XHXMQ6b+dhhcx//Zj52eGkff59LNwvAjoH2duDC5eYkeRnwfcClnmslSeuoT9DPAruS7EyylaU3V2eG5swAt3fbtwGfqKrq+g90n8rZCewCPrM2pUuS+lj20k13zf0QcArYAhyvqtNJjgBzVTUDfBD4iyTzLJ3JH+jWnk7yAHAGWATurKrn1+lYNtJL5jLTOtjMxw6b+/g387HDS/j4s3TiLUlqld+MlaTGGfSS1DiDfoWWux1Eq5IcT/J0kn8ddy0bLcmOJA8neSLJ6STvHHdNGynJy5N8Jsm/dMf/B+OuaaMl2ZLksSQfGXctV8OgX4Get4No1Z+xdBuLzWgR+K2qei3w08Cdm+j/HeBZ4E1V9ZPA9cDeJD895po22juBJ8ZdxNUy6Femz+0gmlRV/8DSJ6o2nar6clV9ttv+b5Z+4V/0De9W1ZL/6Zrf2f1smk9xJNkO3Ar86bhruVoG/cqMuh3EpvmFF3R3Zr0B+PR4K9lY3aWLx4GngYeqajMd/x8DvwN8Y9yFXC2DfmV63dJBbUryCuBB4Der6qvjrmcjVdXzVXU9S99u35Pkx8dd00ZI8ovA01X16LhrWQ2DfmW8pcMmleQ7WQr5v6qqvx13PeNSVf8FfJLN837NG4B9SZ5i6VLtm5L85XhLWjmDfmX63A5Cjeluuf1B4Imqev+469loSSaSfH+3/V3ATcC/jbeqjVFV76qq7VU1xdLv+yeq6u1jLmvFDPoVqKpF4IXbQTwBPFBVp8db1cZI8tfAPwM/lmQhyR3jrmkDvQH4VZbO5h7vfn5h3EVtoB8GHk7yOZZOdh6qqpfkxww3K2+BIEmN84xekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TG/T9IpT8BfTllyAAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.bar(df['x'], df['P(x)'])"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEGCAYAAAB/+QKOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAUPUlEQVR4nO3df6xfd33f8eerNzhB/OhCc7e1ti82YCoMrIl2cbpGBJQmxJTO7h9hNRMj1SJZmWJgCmw1oko0MzQIAyptRsQa3mjX1E1Jh+6YWZY1CaxlIb4haYKdWdwYllw5UtI6wBAh5ibv/fE9Id98/fHNdXKPv0n8fEhf+Xw+5/M537e/tu7rnnO+55xUFZIkjfq5cRcgSXp+MiAkSU0GhCSpyYCQJDUZEJKkptPGXcByOeuss2rNmjXjLkOSXlDuuOOOv66qyda6F01ArFmzhtnZ2XGXIUkvKEn+7/HWeYhJktRkQEiSmgwISVKTASFJajIgJElNBoQkqanXgEiyMcnBJHNJti8y7pIklWR6qO8j3byDSS7us05J0rF6uw4iyQSwE7gImAf2JZmpqgMj414BfAD45lDfemAL8Ebgl4D/meT1VfV4X/VKkp6uzz2IDcBcVR2qqqPAHmBzY9zHgGuAnwz1bQb2VNVjVfVdYK7bniTpJOnzSuqVwAND7Xng3OEBSc4BVlfVV5J8eGTubSNzV46+QZKtwFaAqampZSpbp4rz/t154y6hF3/5/r8cdwl6kehzDyKNvp89vi7JzwGfBT50onN/1lG1q6qmq2p6crJ5KxFJ0rPU5x7EPLB6qL0KODzUfgXwJuDWJAB/F5hJsmkJcyVJPetzD2IfsC7J2iQrGJx0nnlyZVX9oKrOqqo1VbWGwSGlTVU1243bkuT0JGuBdcDtPdYqSRrR2x5EVS0k2QbcCEwAu6tqf5IdwGxVzSwyd3+S64EDwAJwhd9gkqSTq9fbfVfVXmDvSN9Vxxn79pH2x4GP91acJGlRXkktSWoyICRJTQaEJKnJgJAkNRkQkqQmA0KS1GRASJKaDAhJUpMBIUlqMiAkSU0GhCSpyYCQJDUZEJKkJgNCktRkQEiSmgwISVJTrwGRZGOSg0nmkmxvrL88yT1J7kryF0nWd/1rkjza9d+V5PN91ilJOlZvT5RLMgHsBC4C5oF9SWaq6sDQsOuq6vPd+E3AZ4CN3br7qursvuqTJC2uzz2IDcBcVR2qqqPAHmDz8ICq+uFQ82VA9ViPJOkE9BkQK4EHhtrzXd/TJLkiyX3ANcAHhlatTXJnkq8leWuPdUqSGvoMiDT6jtlDqKqdVfVa4HeB3+u6HwSmquoc4ErguiSvPOYNkq1JZpPMPvzww8tYuiSpz4CYB1YPtVcBhxcZvwf4LYCqeqyq/qZbvgO4D3j96ISq2lVV01U1PTk5uWyFS5L6DYh9wLoka5OsALYAM8MDkqwbar4L+E7XP9md5CbJa4B1wKEea5UkjejtW0xVtZBkG3AjMAHsrqr9SXYAs1U1A2xLciHwU+AR4NJu+vnAjiQLwOPA5VV1pK9aJUnH6i0gAKpqL7B3pO+qoeUPHmfeDcANfdYmSVqcV1JLkpoMCElSkwEhSWoyICRJTQaEJKnJgJAkNRkQkqQmA0KS1GRASJKaDAhJUpMBIUlqMiAkSU0GhCSpyYCQJDUZEJKkJgNCktRkQEiSmnoNiCQbkxxMMpdke2P95UnuSXJXkr9Isn5o3Ue6eQeTXNxnnZKkY/UWEEkmgJ3AO4H1wHuGA6BzXVW9uarOBq4BPtPNXQ9sAd4IbAQ+121PknSS9LkHsQGYq6pDVXUU2ANsHh5QVT8car4MqG55M7Cnqh6rqu8Cc932JEknyWk9bnsl8MBQex44d3RQkiuAK4EVwAVDc28bmbuyMXcrsBVgampqWYqWJA30uQeRRl8d01G1s6peC/wu8HsnOHdXVU1X1fTk5ORzKlaS9HR9BsQ8sHqovQo4vMj4PcBvPcu5kqRl1mdA7APWJVmbZAWDk84zwwOSrBtqvgv4Trc8A2xJcnqStcA64PYea5UkjejtHERVLSTZBtwITAC7q2p/kh3AbFXNANuSXAj8FHgEuLSbuz/J9cABYAG4oqoe76tWSdKx+jxJTVXtBfaO9F01tPzBReZ+HPh4f9VJkhbjldSSpCYDQpLUZEBIkpoMCElSkwEhSWoyICRJTQaEJKnJgJAkNRkQkqQmA0KS1GRASJKaDAhJUpMBIUlqMiAkSU0GhCSpyYCQJDUZEJKkpl4DIsnGJAeTzCXZ3lh/ZZIDSe5O8udJXj207vEkd3WvmdG5kqR+9fbI0SQTwE7gImAe2JdkpqoODA27E5iuqh8n+WfANcBvd+seraqz+6pPkrS4PvcgNgBzVXWoqo4Ce4DNwwOq6paq+nHXvA1Y1WM9kqQT0NseBLASeGCoPQ+cu8j4y4CvDrXPSDILLACfqKovj05IshXYCjA1NfWcC5ZOVV87/23jLqEXb/v618ZdwgtanwGRRl81BybvBaaB4f+lU1V1OMlrgJuT3FNV9z1tY1W7gF0A09PTzW1Lkp6dPg8xzQOrh9qrgMOjg5JcCHwU2FRVjz3ZX1WHuz8PAbcC5/RYqyRpRJ8BsQ9Yl2RtkhXAFuBp30ZKcg5wLYNweGio/8wkp3fLZwHnAcMntyVJPevtEFNVLSTZBtwITAC7q2p/kh3AbFXNAJ8CXg78aRKA+6tqE/AG4NokTzAIsU+MfPtJktSzPs9BUFV7gb0jfVcNLV94nHnfAN7cZ22SpMV5JbUkqcmAkCQ1GRCSpCYDQpLUZEBIkpoMCElSkwEhSWoyICRJTQaEJKlpSVdSJ1nF4F5KbwV+CXgU+Dbw34CvVtUTvVUoSRqLZwyIJP+RwbMdvgJ8EngIOAN4PbAR+GiS7VX19T4LlSSdXEvZg/h0VX270f9t4M+6O7X6tB5JepF5xnMQT4ZDkr89ui7JL1fV0aqa66M4SdL4nMhJ6v+V5B892UjyIeC/LH9JkqTngxO53ffbgV1J3g38HeBeYEMfRUmSxm/JexBV9SDw34F/AKwB/qCqftRTXZKkMVvyHkSSm4AHgTcxeL707iRfr6oP91WcJGl8TuQcxM6qel9Vfb87cf1rwA8Wm5BkY5KDSeaSbG+svzLJgSR3J/nzJK8eWndpku90r0tPoE5J0jJ4xoBI97DoqvrycH9VLVTVx4bHjMybAHYC7wTWA+9Jsn5k2J3AdFX9PeBLwDXd3FcBVwPnMjjPcXWSM0/sryZJei6WsgdxS5L3J3natQ5JViS5IMkXgdZv+BuAuao6VFVHgT3A5uEBVXVLVf24a97G4NAVwMXATVV1pKoeAW5icFGeJOkkWco5iI3APwX+OMla4PsMrqSeAP4H8NmquqsxbyXwwFB7nsEewfFcBnx1kbkrRyck2QpsBZia8lo9SVpOzxgQVfUT4HPA55K8BDgLeLSqvv8MU4857ARUc2DyXmAaeNuJzK2qXcAugOnp6ea2JUnPzlLuxXQGcDnwOuBuYHdVLSxh2/PA6qH2KuBwY/sXAh8F3lZVjw3NffvI3FuX8J6SpGWylHMQX2Tw2/09wG8An17itvcB65Ks7e7XtAWYGR6Q5BzgWmBTVT00tOpG4B1JzuxOTr+j65MknSRLOQexvqreDJDkC8DtS9lwVS0k2cbgB/sEgz2P/Ul2ALNVNQN8Cng58KfdF6Hur6pNVXUkyccYhAzAjqo6ckJ/M0nSc7KUgPjpkwvdD/0lb7yq9gJ7R/quGlq+cJG5u4HdS34zSdKyWkpA/EqSH3bLAV7atQNUVb2yt+okSWOzlG8xTZyMQiRJzy8+k1qS1GRASJKaDAhJUpMBIUlqMiAkSU0GhCSpyYCQJDUZEJKkJgNCktRkQEiSmgwISVKTASFJajIgJElNBoQkqcmAkCQ19RoQSTYmOZhkLsn2xvrzk3wryUKSS0bWPZ7kru41MzpXktSvpTxR7llJMgHsBC4C5oF9SWaq6sDQsPuB3wE+3NjEo1V1dl/1SZIW11tAABuAuao6BJBkD7AZ+FlAVNX3unVP9FiHJOlZ6DMgVgIPDLXngXNPYP4ZSWaBBeATVfXl0QFJtgJbAaampp5DqaeO+3e8edwl9GLqqnvGXYL0otPnOYg0+uoE5k9V1TTwj4HfT/LaYzZWtauqpqtqenJy8tnWKUlq6DMg5oHVQ+1VwOGlTq6qw92fh4BbgXOWszhJ0uL6DIh9wLoka5OsALYAS/o2UpIzk5zeLZ8FnMfQuQtJUv96C4iqWgC2ATcC9wLXV9X+JDuSbAJI8pYk88C7gWuT7O+mvwGYTfJXwC0MzkEYEJJ0EvV5kpqq2gvsHem7amh5H4NDT6PzvgG8OM+mStILhFdSS5KaDAhJUpMBIUlqMiAkSU0GhCSpyYCQJDUZEJKkJgNCktRkQEiSmgwISVKTASFJajIgJElNBoQkqcmAkCQ1GRCSpCYDQpLUZEBIkpp6DYgkG5McTDKXZHtj/flJvpVkIcklI+suTfKd7nVpn3VKko7VW0AkmQB2Au8E1gPvSbJ+ZNj9wO8A143MfRVwNXAusAG4OsmZfdUqSTpWn3sQG4C5qjpUVUeBPcDm4QFV9b2quht4YmTuxcBNVXWkqh4BbgI29lirJGnEaT1ueyXwwFB7nsEewbOdu3J0UJKtwFaAqamp427s7/+LP1ji276w3PGp9427BOlF599/6L+Ou4RebPv0PzzhOX3uQaTRV8s5t6p2VdV0VU1PTk6eUHGSpMX1GRDzwOqh9irg8EmYK0laBn0GxD5gXZK1SVYAW4CZJc69EXhHkjO7k9Pv6PokSSdJbwFRVQvANgY/2O8Frq+q/Ul2JNkEkOQtSeaBdwPXJtnfzT0CfIxByOwDdnR9kqSTpM+T1FTVXmDvSN9VQ8v7GBw+as3dDezusz5J0vF5JbUkqcmAkCQ1GRCSpCYDQpLUZEBIkpoMCElSkwEhSWoyICRJTQaEJKnJgJAkNRkQkqQmA0KS1GRASJKaDAhJUpMBIUlqMiAkSU0GhCSpqdeASLIxycEkc0m2N9afnuRPuvXfTLKm61+T5NEkd3Wvz/dZpyTpWL09cjTJBLATuAiYB/YlmamqA0PDLgMeqarXJdkCfBL47W7dfVV1dl/1SZIW1+cexAZgrqoOVdVRYA+weWTMZuCL3fKXgF9Pkh5rkiQtUZ8BsRJ4YKg93/U1x1TVAvAD4Be6dWuT3Jnka0ne2nqDJFuTzCaZffjhh5e3ekk6xfUZEK09gVrimAeBqao6B7gSuC7JK48ZWLWrqqaranpycvI5FyxJekqfATEPrB5qrwIOH29MktOAnweOVNVjVfU3AFV1B3Af8Poea5UkjegzIPYB65KsTbIC2ALMjIyZAS7tli8Bbq6qSjLZneQmyWuAdcChHmuVJI3o7VtMVbWQZBtwIzAB7K6q/Ul2ALNVNQN8AfjDJHPAEQYhAnA+sCPJAvA4cHlVHemrVknSsXoLCICq2gvsHem7amj5J8C7G/NuAG7oszZJ0uK8klqS1GRASJKaDAhJUpMBIUlqMiAkSU0GhCSpyYCQJDUZEJKkJgNCktRkQEiSmgwISVKTASFJajIgJElNBoQkqcmAkCQ1GRCSpCYDQpLU1GtAJNmY5GCSuSTbG+tPT/In3fpvJlkztO4jXf/BJBf3Wack6Vi9BUSSCWAn8E5gPfCeJOtHhl0GPFJVrwM+C3yym7uewfOp3whsBD7XbU+SdJL0uQexAZirqkNVdRTYA2weGbMZ+GK3/CXg15Ok699TVY9V1XeBuW57kqST5LQet70SeGCoPQ+ce7wxVbWQ5AfAL3T9t43MXTn6Bkm2Alu75o+SHFye0p+Ts4C/PhlvlH976cl4m+fipH0WXJ2T8jbPwcn7f/EBP4ufiZ/Fk97/meOuevXxVvQZEK1/mVrimKXMpap2AbtOvLT+JJmtqulx1/F84GfxFD+Lp/hZPOX5/ln0eYhpHlg91F4FHD7emCSnAT8PHFniXElSj/oMiH3AuiRrk6xgcNJ5ZmTMDPDkcZJLgJurqrr+Ld23nNYC64Dbe6xVkjSit0NM3TmFbcCNwASwu6r2J9kBzFbVDPAF4A+TzDHYc9jSzd2f5HrgALAAXFFVj/dV6zJ7Xh3yGjM/i6f4WTzFz+Ipz+vPIoNf2CVJejqvpJYkNRkQkqQmA2KZPNNtRU4lSXYneSjJt8ddyzglWZ3kliT3Jtmf5IPjrmlckpyR5PYkf9V9Fv9q3DWNW5KJJHcm+cq4azkeA2IZLPG2IqeS/8TgFimnugXgQ1X1BuBXgStO4f8XjwEXVNWvAGcDG5P86phrGrcPAveOu4jFGBDLYym3FTllVNXXGXwr7ZRWVQ9W1be65f/H4IfBMXcEOBXUwI+65ku61yn7DZkkq4B3Af9h3LUsxoBYHq3bipySPwjU1t2p+Bzgm+OtZHy6Qyp3AQ8BN1XVKftZAL8P/EvgiXEXshgDYnks6dYgOjUleTlwA/DPq+qH465nXKrq8ao6m8GdETYkedO4axqHJL8JPFRVd4y7lmdiQCwPbw2ipiQvYRAOf1RVfzbuep4Pqur7wK2cuuepzgM2Jfkeg8PRFyT5z+Mtqc2AWB5Lua2ITjHdreu/ANxbVce/l+YpIMlkkr/VLb8UuBD4P+Otajyq6iNVtaqq1jD4WXFzVb13zGU1GRDLoKoWgCdvK3IvcH1V7R9vVeOT5I+B/w38cpL5JJeNu6YxOQ/4Jwx+Q7yre/3GuIsak18EbklyN4NfqG6qquft1zs14K02JElN7kFIkpoMCElSkwEhSWoyICRJTQaEJKnJgJAkNRkQkqQmA0LqSZK3JLm7exbCy7rnIJyS9x/SC5MXykk9SvKvgTOAlwLzVfVvxlyStGQGhNSj7t5c+4CfAL9WVY+PuSRpyTzEJPXrVcDLgVcw2JOQXjDcg5B6lGSGwS2d1wK/WFXbxlyStGSnjbsA6cUqyfuAhaq6rntu+TeSXFBVN4+7Nmkp3IOQJDV5DkKS1GRASJKaDAhJUpMBIUlqMiAkSU0GhCSpyYCQJDX9fxeP3bQQ+JdwAAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"sns.barplot(df['x'], df['P(x)'])"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [],
"source": [
"# scipy.norm.mean; scipy.norm.var; scipy.norm.std but how?"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.12"
}
},
"nbformat": 4,
"nbformat_minor": 4
}